Another Solution to the Schrödinger-Langevin Equation
نویسندگان
چکیده
Introduction: an alternative solution to the Schrodinger-Langevin equation is presented, where temporal dependence explained, assuming a Coulomb potential. Finally, trajectory equations are found. Objective: in this paper we contribute by presenting detailed and simple of Schrödinger-Langevin for Materials Methods: using appropriate ansatz, solve equation, finding expected values position moment. Results: method was presented find moment ansatz used these solutions allows model be generalized certain way electric potentials harmonic oscillators. Conclusions: allowed particle potential, such made explicit, which path particles.
منابع مشابه
On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملSolution of a Nonlinear Schrödinger Equation
A slightly modified variant of the cubic periodic one-dimensional nonlinear Schrödinger equation is shown to be well-posed, in a relatively weak sense, in certain function spaces wider than L. Solutions are constructed as sums of infinite series of multilinear operators applied to initial data; no fixed point argument or energy inequality are used.
متن کاملSolution of the Time-dependent Schrödinger Equation Using Interpolating Wavelets
An adaptive numerical method for solution of the time-dependent Schrödinger equation is presented. By using an interpolating wavelet transform the number of used points can be reduced, constructing an adaptive sparse point representation. Two di erent discretisation approaches are studied in 1D ; one point-based and one based on equidistant blocks. Due to the nature of the wavelet transform a s...
متن کاملnumerical solution for one-dimensional independent of time schrödinger equation
in this paper, one of the numerical solution method of one- particle, one dimensional timeindependentschrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function v(x).for each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. the paper ended with a comparison ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista lasallista de investigacion
سال: 2021
ISSN: ['1794-4449', '2256-3938']
DOI: https://doi.org/10.22507/rli.v18n1a2